Code: EM3T4, IT3T1

II B.Tech - I Semester - Regular Examinations - January 2014

DISCRETE MATHEMATICS (Common for ECM, IT)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Construct the truth table of the following formula $\sim (P \lor (Q \land R)) \leftrightarrow (P \lor Q) \land (P \lor R)$. 7 M
 - b) Show that $\sim (P \lor (\sim P \land Q))$ and $(\sim P \land \sim Q)$ are logically equivalent. 7 M
- Obtain the principal disjunctive and principal conjunctive normal forms of
 (P → (QΛR))Λ(~P → (~QΛ~R)).
 14 M
- 3 a) Find and prove a formula for the sum of first n cubes
 1³ + 2³ + ··· + n³
 by using mathematical induction.
 7 M
 - b) Show that SVR is tautologically implied by $(PVQ)\Lambda(P \rightarrow R)\Lambda(Q \rightarrow S)$. 7 M

- 4 a) Find the number of ways of arranging 6 boys and 6 girls in a row. In how many of these arrangements
 - i. All the girls are together.
 - ii. No two girls are together.
 - iii. Boys and girls come alternatively.

7 M

- b) How many different strings can be made from the letters in MISSISSIPPI using all the letters? 7 M
- 5 a) Solve the linear recurrence relation

$$H_n = H_{n-1} + (n-1), n \ge 2, H_1 = 0$$

of the handshake problem by using substitution method.

7 M

b) Solve the linear recurrence relation by using method of characteristic roots.

$$a_n - 7a_{n-1} + 12a_{n-2} = 0$$
, $n \ge 2$, $a_0 = 2$ and $a_1 = 5$. 7 M

6 a) If R is a relation on the set of integers Z defined by

$$R = \{(x, y): x - y \text{ is divisible by 3}\}$$

then prove that R is an equivalence relation?

7 M

- b) Define a lattice? Show that $(D_8,/)$ is a lattice. where D_8 is the set of all divisors of 8.
- 7 a) Write Warshall's algorithm to find the transitive closure of a digraph. 7 M

- b) Consider the relation

 R={(a,a),(a,b),(a,c), (b,b),(b,d),(c,c),(c,d)}.

 Draw digraph for the relation R and represent adjacency matrix?

 7 M
- 8 a) Explain the Konigsberg bridge problem? 7 M
 - b) Define Hamiltonian and Eulerian graphs? Also give an example of a graph which is Hamiltonian but not Eulerian.

 7 M